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THE DISCRETE BRANCHING POINT AS A ONE DEGREE
OF FREEDOM PHENOMENON

G. W. HUNT

Department of Civil and Municipal Engineering, University College, London

Abstract-The first discrete branching point of a conservative structural system is shown to be essentially a one
degree of freedom phenomenon using a generalized coordinates approach. A continuing perturbation scheme
which reduces the system to a single degree of freedom is presented and is shown to be valid under a wide range of
circumstances. The process is used in conjunction with a topological approach to extend the proofs of two basic
theorems of elastic stability to multi-degree of freedom systems with discrete branching points.

1. INTRODUCTION

SOME insight into the various phenomena which occur in the nonlinear theory of elastic
stability has been gained by the discrete representation ofcontinuous systems. The discrete
approach was originally introduced in the field of hydrodynamic stability by Poincare [1]
but more recently has been adapted to structures by Thompson [2-5] whose wQrk is
comparable to the nonlinear continuum studies ofKoiter [6]. In the generalized coordinates
approach the emphasis has been placed on branching behaviour at discrete critical points
although some considerable thought has been given to snapping behaviour [2] and the
coupled buckling behaviour at coincident branching points [7, 8].

It has previously been known that a discrete critical point may be considered as a one
degree offreedom problem [1, 6, 9,10] but there remained a need for this to be authenticated
by a process which can be shown to be valid under general circumstances; we need to show
that all phenomena associated with the general system are present in the single degree of
freedom analysis. To achieve this we introduce a perturbation process which is similar to
the type derived previously by Sewell [7, 11, 12J and later fully demonstrated by Thompson
and Hunt [13, 14].

The paper secondly focuses attention on two theorems, proved for a single degree of
freedom system by Thompson [15J, which we may regard as being basic to the field of
elastic stability. The first question is posed: can a fundamental equilibrium path thoroughly
[5] lose its stability at a discrete critical point without intersecting a second distinct (post
buckling) equilibrium path? We know that the linear approach demonstrates that a critical
point is associated with an "adjacent position ofequilibrium" but in nonlinear terms we are
forced to inquire whether this implies a distinct post-buckling path of non-zero length.

The second theorem concerns the stability of the critical point itself. We again consider
an initially stable fundamental equilibrium path rising monotonically with the loading
parameter but now make no reference to the stability of the post-critical fundamental path,
merely insisting that the critical point is unstable owing to nonlinear terms in a Taylor
series expansion of the energy function. This may be dangerous because a structural
system would snap dynamically from such a point, and furthermore we know that such a
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system is accompanied by severe imperfection sensitivity. The theorem states that this
situation cannot exist without a convenient analytical warning being provided by the
approach of a second distinct (post-buckling) equilibrium path at sub-critical values of the
loading parameter.

2. GENERAL THEORY

Let us first consider a discrete conservative structural system described by the total
potential energy function V(Qi' A) in which Qi represents a set of n generalized coordinates
and A is a loading parameter. Let us now suppose that in the region of interest the n
equilibrium equations V; = °yield a single-valued fundamental solution Qi = Qf(A), a
subscript on V denoting partial differentiation with respect to the appropriate generalized
coordinate. We introduce a sliding set of incremental coordinates which are defined by

Qi = Qf(A)+qi

together with a new energy function [3]

W(qi' A) == V[Qf(A)+qi,A].

(1)

(2)

Following Thompson [5] we accept as axiomatic the normal equilibrium and stability
conditions and note that they hold good for the new energy function.

The quadratic form of the W function may now be diagonalized by means of a non
singular linear transformation of the type qi = (Xij(A)u j [3]. Here as elsewhere in the paper
unless indicated to the contrary, the repeated suffix summation convention is employed with
all summations ranging from 1 to n. We shall suppose that one of the infinite number of
possible transformations has been chosen, in which (Xij is a continuous and single-valued
function of A.

It is now possible to introduce the transformed energy function

(3)

The normal equilibrium and stability conditions again hold good for this new energy
function which has the properties

Ai(O, A) = A;(O, A) = A~(O, A) = = 0,

Ai/O, A) = A;/O, A) = A~/O, A) = = ° for i -=I- j,
(4)

a subscript again denoting partial differentiation with respect to the corresponding
generalized coordinate, and a prime denoting partial differentiation with respect to A.
We see we have a valid mapping from the original A - Qi space to the new A- U i space in
which the fundamental path is given by Ui = 0.

The diagonalized nature of the transformed energy function presents us with a set of n
stability coefficients Aii(O, A) and we focus attention on a discrete critical point on the
fundamental path at which a single stability coefficient vanishes. Thus it is possible to
write

Alll C = A 11(0, N) = °
Asslc = AsiO, N) -=I- ° for s -=I- 1

(5)



The discrete branching point as a one degree of freedom phenomenon 497

where N is the critical value of A. Having specified a single-valued fundamental equilibrium
path, such a critical point will in general correspond to a point of bifurcation.

The reduction to one degree of freedom

We now seek to generate a valid scheme of ordered equations which will reduce the
problem to one with a single degree of freedom. Let us consider the n-1 equilibrium
equations

A.(ui , A) = 0, s =f. 1. (6)

These equations contain n+ 1 unknowns and therefore the problem may be reduced to one
involving two independent variables. This enables us to write the generalized coordinates
Us in the parametric form

(7)

assuming without any loss of generality that the first generalized coordinate and the
loading parameter are suitable expansion parameters.

These parametric equations may be substituted into the equilibrium equations As = °
to give the identity

t =f. 1. (8)

Here the left-hand side is a function of the two independent variables so the equations may
be differentiated with respect to either or both of these variables as many times as we please.
Thus, differentiating repeatedly we generate the ordered equilibrium equations

62

~As = Astt +2As/1Utl +AstvUtlUvl +AstUtll = 0,
vU 1

6U~~A As = As/IU;+A~l +As/vU/IU~+A~/U/l +As/U;l = 0,

6~2As = Astvu;u~+2A~/u;+Astu;'+A~ = 0,

(9)

etc., where s =f. 1, t =f. 1, v =f. 1, etc. As before a prime denotes partial differentiation with
respect to the loading parameter and a subscript 1 denotes partial differentiation with
respect to U 1 .

Evaluating the ordered equilibrium equations on the fundamental path and remember
ing the properties given by (4), these equations may be sequentially solved to give the
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derivatives
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ut = 0,

_ ASlll
F

Ass '

u~{ = U;F = 0,

1 IF-T[Aslll +3Astl Utl d ,
ss

__I_[A~ll +A~sUSll]IF(no summation over s),
Ass

(10)

etc. This continuing process constitutes a valid scheme since the denominator ofall deriva
tives is Afs which we have noted is non-zero. Furthermore, one is not compelled to assume
a simple critical point in the sense that A~ ll~ ;;j.: 0 etc. [3].

The evaluation of these derivatives enables Us(Ul, A) to be expanded as a power series.
This will generate a surface similar to that shown in Fig. 1, which is defined by the n - 1
conditions As = O. Equilibrium paths will lie in this surface and will be further defined by
the final condition for equilibrium, Al = O. The expressions may be substituted into the A
function and we can define a new energy function with only one degree of freedom

(11)

(12)

It should be noted that the derivatives of this new energy function may be obtained
directly from the known derivatives;

d 1 = Al +Asus1 , I
d' = Asu~+A',

d ll = All +2As1us1 +Astus1Utl +Asusll ,

etc.

Equilibrium and stability conditions

Before proceeding further it is necessary to show that the normal equilibrium and
stability conditions still hold good for the new energy function. The equilibrium equations
As = 0(8 ;;j.: 1) have been used in the derivation of the d function so the equation Al = 0
is now the necessary and sufficient condition for equilibrium. If we now examine the
expression for .911 given by (12) we find that for equilibrium the second term of the right-hand
side vanishes-before evaluation on the fundamental path-by virtue of the original
conditions As = O. It may therefore be concluded that d 1 = 0 is now both necessary and
sufficient for equilibrium and the well known equilibrium condition is preserved within the
region of interest.

The stability condition requires a more detailed examination. We know the potential
energy A to be stationary with respect to each of the passive coordinates on the curved
surface of Fig. 1, and furthermore these stationary points are minima, since we are working
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FIG. I. The surface generated by the n-l equilibrium equations.
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in a region of interest which may be thought of as being "stable with respect to the passive
coordinates". Some possible A contours in U 1 - Us space about the stable fundamental path
at a fixed A level are shown in Fig. 2, in which XX represents the curved surface of interest.
YY indicates a section through the A surface at a constant U 1 value, and we know this to
display a minimum at its intersection with XX. The potential energy surface is therefore

y

x

y

FIG. 2. Energy contours at a fixed load level.
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marked with a curve ofpassive minima-the curve XX-which will pass through all possible
equilibrium states at the fixed load level.

Let us now consider the stability of anyone of these equilibrium states. If the total
potential energy is a minimum along the curve XX, it is certainly a complete minimum;
if A increases as we pass out of the equilibrium state along XX, for any other path out of the
equilibrium state it will also increase. The d function operates exclusively along the curve
XX, and hence to say that the total potential energy is a minimum along XX is equivalent
to saying that d is a minimum with respect to U1' However, should d not be a minimum
with respect to u1 , then the equilibrium state is most certainly unstable since we now have
a falling potential energy as we pass along Xx. For example, Fig. 3 shows a potential energy
surface at a post-critical load level, from which it can be seen that a critical movement away
from the unstable equilibrium state would follow the way of passive minima-the curve XX.
This reasoning leads us to the conclusion that a minimum of d with respect to U 1 is both
necessary and sufficient for stability and the well known stability condition is preserved
over the transformation: we note that this conclusion holds for equilibrium states both on
and off the fundamental path.

A

FIG. 3. Potential energy surface at a post-critical load.

Furthermore, if the expression for d 11 (12) is examined we find that, with evaluation
on the fundamental equilibrium path, all terms but the first vanish by virtue ofthe equations
As = 0 and subsequent analysis. It is well known that on the fundamental path the stability
of the system described by the A function depends initially on the stability coefficient A 11 •

This leads to a subsequent conclusion, namely that for the system described by the d
function the necessary and sufficient condition for thorough stability [5] along the
fundamental path is d 11 > O.

3. TWO BASIC THEOREMS

The single degree of freedom treatment of a discrete critical point can now be used to
prove two basic theorems in elastic stability in greater generality than previously. Thompson
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[15] formulates the theorems and presents us with topological and analytical proofs for
systems with one degree of freedom. We shall content ourselves here with extending these
to a multi-degree of freedom system with a discrete branching point using the powerful
topological argument.

Thompson states the first theorem as follows. An initially-stable (fundamental) equilibrium
path rising monotonically with the loading parameter cannot become (thoroughly) unstable
without intersecting a second distinct (post-buckling) equilibrium path. To prove this we first
consider the discrete conservative structural system described in the general theory.
As has been seen this may then be reduced to the single degree of freedom system described
by JII(u l , A) providing we are concerned with loss of stability at a discrete branching point.
The necessary and sufficient condition for equilibrium is JIll = 0 and the necessary and
sufficient condition for the system to be thoroughly stable on the fundamental path is
JIIII > O. We have a single-valued fundamental equilibrium path which loses its stability
at the discrete critical point (0, N) and we investigate the existence of a further post-buckling
path passing through the critical point.

Consider the variation of the function F(Ul' A) = JIIl(U l , A) within the region of interest.
For stable equilibrium JII is a local minimum so we may deduce that in the region surround
ing the stable fundamental path the F function adopts the sign of UI' Similarly for a load
above the critical load, JII contains a stationary point which is not a minimum and F must
therefore be negative for positive Ul or positive for negative Ul . Normally this stationary
point will be a maximum and both conditions hold; this is the situation illustrated in Fig. 4.
Assuming the F function to be continuous we find there must be present a second equilibrium
path defined by F(u l , A) = 0 which passes through the critical point and the first theorem
is proved.

A 1
I
I
I
I

F=+ I F-
I
I
I
I
I

F=O

Ul

FIG. 4. Topological proof of the first theorem.
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The second theorem is concerned with the stability of the critical point itself. Thompson
[15] states this as follows. An initially-stable (fundamental) equilibrium path rising monotonic
ally with the loading parameter cannot approach an unstable critical equilibrium state (from
which the system would snap dynamically) without the approach of a second distinct (post
buckling) equilibrium path at sub-critical values ofthe loading parameter. As before we consider
the discrete conservative structural system of the general theory and reduce it to the single
degree offreedom system described by d(u1 , A). We again have a single-valued fundamental
equilibrium path which yields a discrete critical point (0, N) but now make no reference to
the stability or instability of the fundamental path above N. Within the region of interest
the normal equilibrium and stability conditions are preserved over the transformation to a
single degree of freedom, despite the fact that at the critical point the stability of the system
is not dependent on the second derivative d 11 which is now zero, but will rest on higher
order terms in a Taylor series expansion.

We again consider the variation of the function F(u 1 , A) = d 1(U 1 , A) over the region
ofinterest. As before the F function adopts the sign of u1 in the region surrounding the stable
fundamental path. If we now suppose the nonlinearities in the Taylor series expansion of
the energy function cause the critical equilibrium state to be unstable, F must be either
negative for positive u1 (as shown in Fig. 5) or positive for negative u1 at A = N. This leads
to the conclusion that a second equilibrium path defined by F(Ul' A) = 0 which passes
through the critical point must approach the fundamental path at sub-critical values of the
loading parameter and the second theorem is proved.

4. CONCLUDING REMARKS

The single degree of freedom treatment of a multi-degree of freedom system with a
discrete branching point has been developed as an ordered perturbation process. The

A

N F·-
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FIG. 5. Topological proof of the second theorem.
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continuing scheme does not rely on the common assumption that the critical point is simple,
and hence it becomes acceptable over a wide range of circumstances.

The proofs of the basic theorems are limited to the extent that they consider only
discrete branching points. A similar approach may be beneficial if we wish to include
coincident branching points although this naturally leads to the inclusion of coupled
buckling phenomena [7, 8].
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A6cTpaKT-l1cnoflb3Yll noll,XOll, 0606U1eHHblx Koopll,IIHaT, OKa3blBaeTcll, 'ITO nepBali ll,IICKpeTHali TO'lKa
pa3BeTBfleHII1I KocepBaTIIBHOH CllcTeMbl KOHCTpyKUlI1I rrpell,CTaBfllle1 c060" B OCHOBHOM Oll,HY CTerreHb
CB060ll,bl. )].aeTcli HenpepblBHali cxeMa B03MYLUeHII1I, KOTopali CBOll,IIT CIlCTeMY K CIlCTeMe 06flall,alQllIeH
Oll,HHapHOH CTeneHblQ CB060ll,bl. 3Ta cxeMa BalKHa ll,flll WllpOKoro Kpyra 06cToliTeflbcTB. npouecc B03My
LUeHlIlI Hcrroflb3yeTcli B MeCTe C TOrrOflll'leCKHM rrOll,XOll,OM, c ueflblQ paCWllpeHHlI ll,OKa3aTeflbCTB ll,ByX
OCHOBHblX TeopeM yrrpyroH YCTOH'lIlBOCTII K CHCTeMaM C MHorHMH CTeneHlIMH CB060ll,bl II C ll,IICKpeTHbIMH
TO'lKaMH pa3BeTBfleHlI1I.


